Witamina D, zakażenia i odporność
PDF (English)

Słowa kluczowe

witamina D
układ immunologiczny
zakażenia
autoagresja

Jak cytować

Misiorowski, W. (2020). Witamina D, zakażenia i odporność. Wiedza Medyczna, 2(2), 6-15. https://doi.org/10.36553/wm.55

Abstrakt

Witamina D (VD) to steroidowy prohormon, uczestniczący w regulacji homeostazy wapniowo-fosforanowej, kluczowy dla mineralizacji kości. W ostatnich latach wykazano także szereg pozakostnych działań witaminy D, m.in. ważną rolę w immunomodulacji, regulacji produkcji cytokin i proliferacji i różnicowaniu się komórek układu odpornościowego. Niedobór VD jest związany z podatnością na zakażenia wirusowe i bakteryjne a także zwiększonym ryzykiem rozwoju chorób autoimmunologicznych. W niniejszej pracy dokonano przeglądu danych na temat roli witaminy D w genezie różnych zaburzeń immunologicznych. Możliwa rola witaminy D w zwalczaniu zakażeń wynika z jej modyfikującego wpływu na bierną i czynną odpowiedzi immunologiczne. Istotnym działaniem witaminy D jest hamowanie procesów zapalnych, ale jednocześnie zwiększa transkrypcję "endogennych antybiotyków", takich jak katelicydyna i defensyny. VD zmniejsza prezentację antygenów przez komórki dendrytyczne, hamuje polaryzację komórek Th0 do komórek Th1 lub -2 i ogranicza produkcję cytokin prozapalnych, zwłaszcza INFγ, a jednocześnie ułatwia tworzenie się Treg, co w efekcie ogranicza i umożliwia wygaśnięcie reakcji immunologicznej. Istnieją dane wskazujące że VD może łagodzić objawy chorób autoimmunologicznych zależnych od Th1 (np. stwardnienie rozsiane, cukrzyca typu 1, choroba Leśniowskiego-Crohna, reumatoidalne zapalenie stawów itp.) w modelach zwierzęcych i u ludzi. VD wydaje się być również użytecznym uzupełnieniem w zapobieganiu odrzuceniu przeszczepu. Na uwagę zasługują sercowo-naczyniowe i zakrzepowe elementy choroby SARS-CoV-2, które mogą być łączone z gorszym zaopatrzeniem w witaminę D. Istnieją również dane wskazujące na rolę niedoboru witaminy D w patogenezie "burzy cytokinowej", jedną z najpoważniejszych konsekwencji zakażenia COVID-19. Należy jednak podkreślić, że pomimo coraz liczniejszych danych klinicznych silnie łączących witaminę D z ryzykiem i przebiegiem infekcji SARS-CoV-2, to muszą one być traktowane z ostrożnością, a domniemany związek powinien być nadal uważany za hipotetyczny.

https://doi.org/10.36553/wm.55
PDF (English)

Bibliografia

(1) Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010; 376(9736):180-188.

(2) Ahn J, Yu K, Stolzenberg-Solomon R, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010; 19(13):2739-2745.

(3) Engelman CD, Meyers KJ, Ziegler JT, et al. Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J Steroid Biochem. Mol Bio 2010; 122(4):186-192.

(4) Signorello LB, Shi J, Cai Q, et al. Common variation in vitamin D pathway genes predicts circulating 25-hydroxyvitamin D levels among African Americans. PLoS One 2011; 6(12):e28623.

(5) Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 2005; 26(5):662-687.

(6) White JH. Vitamin D signalling, infectious diseases and regulation of innate immunity. Infect Immun 2008; 76(9):3837-3843.

(7) Wang TT, Nestel FP, Bordeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173(5):2909-2912.

(8) Bossé Y, Maghni K, Hudson TJ. 1α,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility and remodelling processes. Physiol. Genomics 2007; 29:161-168.

(9) Hewison M. Vitamin D and the intracrinology of innate immunity. Molecular and Cellular Endocrinology 2010; 321,103-111.

(10) Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol 2003; 170(11):5382-5390.

(11) Overbergh L, Decallonne B, Waer M, et al. 1α,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543). Diabetes 2000; 49(8):1301-1307.

(12) Overbergh L, Decallone B, Waer M. et al. Immune regulation of 25-hydroxyvitamin D-1α-hydroxylase in human monocytic THP-1 cells: mechanisms of interferon-γ-mediated induction. J Endocrinol Metab 2006; 91:3566-3574.

(13) Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25-hydroxyvitamin-D3- -1α-hydroxylase in human monocytes. J Bone Miner Res 2006; 21(1):37-47.

(14) Jakóbisiak M. Główne komponenty i zasadnicze cechy odpowiedzi immunologicznej. [In.]: Immunologia, 2nd ed.; Wydawnictwo Naukowe PWN; Warsaw, Poland 1995; 28-36.

(15) Bruce D, Ooi JH, Yu S, Cantorna MT. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp Biol Med 2010; 235:921-927.

(16) Beard JA.; Bearden A, Striker R. Vitamin D and the anti-viral state. J Clin Virol 2011; 50:194-200.

(17) Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2016; 1376:29-51.

(18) Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7:4240-4270.

(19) Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol. Infect 2006; 134:1129-1140.

(20) Sundaram ME, Coleman LA. Vitamin D and influenza. Adv Nutr 2012; 3:517-525.

(21) Sadeghi K, Wessner B, Laggner U, et al. vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36(2):361-370.

(22) Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol 2015; 83:83-91.

(23) Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 2004/b; 80 (suppl. 6):171S-120S.

(24) Hughes DA, Norton R. Vitamin D and respiratory health. Clin Exp Immunol 2009; 158(1):20-25.

(25) Nizet V, Ohtake T, Lauth X et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414(6862):454-457.

(26) Saiman L, Tabibi S, Starner TD, et al. Cathelicidin peptides multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob. Agents Chemother 2001; 45:2838-2844.

(27) Zhang L, Yu W, He T, et al. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 2002; 298(5595):995-1000.

(28) Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9):710-720.

(29) Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human β-defensin 3 in skin keratinocytes. Infect Immunol 2006; 74(12):6847-6854.

(30) Herr C, Shaykhiev R, Bals R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin Biol Ther 2007; 7 (9):1449-1461.

(31) Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 2007; 6(6):403-410.

(32) Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 2007; 179(4):2060-2063.

(33) Martineau AR, Wilkinson KA, Newton SM, et al. IFNγ – and TNF – independent vitamin D – inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 2007; 178:7190-7198.

(34) Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311:1770-1773.

(35) Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, Borregaard N, Modlin RL, Hewison M. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. Journal of Immunology 2009; 182:4289-4295.

(36) Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host and Microbe 2009; 6:231-243.

(37) Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB Journal 2005; 19:1067-1077.

(38) Kim J, Yang YL, Jang SH, Jang YS. Human beta-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virology Journal 2018; 15, 124.

(39) Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D3 during Mycobacterium infection. Innate Immunity 2017; 23, 506-523.

(40) Hubel E, Kiefer T, Weber J, Mettang T, Kuhlmann U. In vivo effect of 1,25-dihydroxyvitamin D3 on phagocyte function in hemodialysis patients. Kidney International 1991; 40, 927-933.

(41) Subramanian K, Bergman P, Henriques-Normark B. Vitamin D promotes pneumococcal killing and modulates inflammatory responses in primary human neutrophils. Journal of Innate Immunity 2017; 9, 375-386.

(42) Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology: Gastrointestinal and Liver Physiology 2008; 294, G208-G216.

(43) Shi YY, Liu TJ, Fu JH, Xu W, Wu LL, Hou AN, Zue XD. Vitamin D/VDR signaling attenuates lipopolysaccharideinduced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Molecular Medicine Reports 2016; 13, 1186-1194.

(44) Schrumpf JA, van Sterkenburg MAJA, Verhoosel RM et al. Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infection and Immunity 2012; 80(12):4485-4494.

(45) van der Does AM, Bergman P, Agerberth B, Lindbom L. Induction of the human cathelicidin LL-37 as a novel treatment against bacterial infections. Journal of Leukocyte Biology 2012; 92(4)735-742.

(46) Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7(6):4240-4270.

(47) Chun RF, Liu PT, Modlin RL, et al Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol 2014; 5, 1-15.

(48) Adler HS, Steinbrink K. Tolerogenic dendritic cells in health and disease: friend and foe. Eur J Dermatol 2007; 17(6):476-491.

(49) Massoud AH, Guay J, Shalaby KH, et al. Intravenous immunoglobulin attenuates airway inflammation through induction of forkhead box protein 3-positive regulatory T cells. J Allergy Clin Immunol 2012; 129(6):1656-1665.e3.

(50) Van der Aar AM, Sibiryak DS, Bakdash G et al. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J. Allergy Clin Immunol 2011; 127(6):1532-1540.

(51) Fu S, Zhang N, Yopp AC, et al. TGF-β induces FOXp3+ T regulatory cells from CD4+ CD25+ precursors. Am J Transplant 2004; 4(10):1614-1627.

(52) Lyakh LA, Sanford M, Chekol S, et al. TGF-β and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol 2005; 174(4):2061-2070.

(53) Roncarolo MG, Gregori S, Battaglia M, et al. Interleukin-10 secreting type-1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212:28-50.

(54) Boks MA, Kager-Groenland JR, Haasjes MS, et al. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction – a comparative study of human clinical-applicable DC. Clin Immunol 2012; 142(3):332-342.

(55) Adorini L. Tolerogenic dendritic cells induced by vitamin D receptor ligand enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci 20003; 987(Apr):258-261.

(56) Adorini L, Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. Handb Exp Pharmacol 2009; (188):251-273.

(57) Griffin MD, Lutz WH, Phan VA, et al. Potent inhibition of cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 2000; 270(3):701-708.

(58) Van Etten E, Mathieu C. Immunoregulation by 1,25 dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 2005; 97(1-2):93-101.

(59) Eagar TN, Tompkins SM, Miller SD. Helper T-cell subsets and control of the inflammatory response. [In.]: Clinical Immunology. Rich RR, Fleisher TA, Shearer WR et al. [Eds.]. Mosby, London, UK. Section 2, Chapter 16, 16.1-16.12 (2001).

(60) O'Shea JJ, Frucht DM, Duckett CS. Cytokines and cytokine receptors. [In.]: Clinical Immunology. Rich RR, Fleisher TA, Shearer WR et al. [Eds.]. Mosby, London, UK. Section 1, Chapter 12, 12.1-12.22 (2001).

(61) Jeffery LE, Burke RF, Mura M, et al. 1,25-dihydxroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 2009; 183(9):5458-5467.

(62) Bluestone JA. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 1997; 158(5):1989-1993.

(63) Takahashi T, Tagami T, Yamazaki S et al. Immunological self-tolerance maintained by C25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T-lymphocyte associated antigen 4. J Exp Med 2000; 192(2):303-310.

(64) Imazeki I, Matsuzaki J, Tsuji K, Nishimura T. Immunomodulating effect of vitamin D3 derivatives on type-1 cellular immunity. Biomed Res 2006; 27(1):1-9.

(65) Barrat FJ, Cua DJ, Boonstra A, et al. In vitro generation of interleukin-10 producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J Exp Med 2002; 195(5):603-616.

(66) Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin-2 production. J Exp Med 1998; 188(2):287-290.

(67) Joshi S, Pantalena LC, Liu XK et al. 1,25-dihydoxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin 17A. Mol Cell Biol 2011; 31(17):3653-3669.

(68) Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 2000; 95(10):3183-3190.

(69) Boonstra A, Barrat FJ, Crain C, et al. α,25-dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167(1):4974-4980.

(70) Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2):287-296.

(71) Xia JB, Wang CZ, Ma JX, An XJ. Immunoregulatory role of 1, 25-dihydroxyvitamin D(3)-treated dendritic cells in allergic airway inflammation. Zhonghua Yi Xue Za Zhi 2009; 89(8):514-518.

(72) Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057-1061.

(73) Roncarolo M-G, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000; 12(6):676-683.

(74) Roncarolo M-G, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193(2):F5-F9.

(75) Urry Z, Xystrakis E, Richards DF et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1α,25-dihydroxyvitamin D3 abrogates regulatory functions. J Clin Invest 2009; 119(2):387-398.

(76) Saggese G, Federico G, Balestri M, Toniolo A. Calcitriol inhibits the PHA-induced production of IL-2 and IFN-gamma and the proliferation of human peripheral blood leukocytes while enhancing the surface expression of HLA class II molecules. J Endocrinol Invest 1989; 12(5):329-335.

(77) Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin2-gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by nuclear hormone receptor. Mol Cell Biol 1995; 15(10):5789-5799.

(78) Matilainen JM, Räsänen A, Gynther P, Väisänen S. The genes encoding cytokines IL-2, IL-12 and IL-12B are primary 1α,25(OH)2D3 target genes. J Steroid Biochem Mol Biol 2010; 121(1-2):142-145.

(79) Takeuchi A, Reddy GS, Kobayashi T. Nuclear factor of activated T cells (NFAT) as a molecular target for 1α, 25-dihydroxyvitamin D3-mediated effects. J Immunol 1998; 160(1):209-218.

(80) Lemire JM, Adams JS, Kermani-Arab V et al. 1,25-dihydoxyvitamin D3 suppresses human T helper/induces lymphocyte activity in vitro. J Immunol 1985; 134(5):3022-3025.

(81) Cantorna MT, Zhao J, Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc 2011a; 14, 1-5.

(82) Yu S, Zhao J, Cantorna MT. Invariant NKT cell defects in vitamin D receptor knockout mice prevents experimental lung inflammation. J Immunol 2011; 187(9):4907-4912.

(83) Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29(6):726-776.

(84) Cantorna MT, Hayes CE, DeLuca HF. 1,25-dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 1996; 93(15):7861-7864.

(85) Nataf S, Garcion E, Darcy F, et al. 1,25 dihydroxyvitamin D3 exerts regional effects in the central nervous system during experimental allergic encephalomyelitis. J Neuropathol Exp Neurol 1996; 55(8):904-914.

(86) Ho SL, Alappat L, Awad AB. Vitamin D and multiple sclerosis. Crit Rev Food Sci Nutr 2012; 52(11):980-987.

(87) Brown SJ. The role of vitamin D in multiple sclerosis. Ann Pharmacother 2006; 40(6):1158-1161.

(88) Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006; 296(23):2832-2838.

(89) Froicu M, Weaver CV, Wynn TA et al. A crucial role for the vitamin D receptor in experimental bowel diseases. Mol Endocrinol 2003; 17(12):2386-2392.

(90) Lim WC, Hanauer SB, Li YC. Mechanism of disease: vitamin D and inflammatory bowel disease. Natl Clin Gastroenterol Hepatol 2005; 2(7):308-315.

(91) Park SY, Gupta D, Kim CH, Dziarski R. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLoS ONE 2011; 6(9):e24961.

(92) Colin EM, Asmawidjaja PS, van Hamburg JP et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum 2011; 62(1):132-142.

(93) Hullett DA, Cantorna MT, Redaelli C et al. Prolongation of allograft survival by 1,25-dihydroxyvitamin D3. Transplantation 1998; 66(7):824-828.

(94) Adorini L. 1,25-dihydroxyvitamin D3 analogs as potential therapies in transplantation. Curr Opin Investig Drugs 2002; 3(10):1458-1463.

(95) Zhang AB, Zheng SS, Jia CK, Wang Y. Effect of 1,25-dihydroxyvitamin D3 on preventing allograft from acute rejection following rat orthotopic liver transplantation. World J Gastroenterol 2003; 9(5):1067-1071.

(96) Hullett DA, Laeseke PF, Malin G, Nessel R, Sollinger HW, Becker BN. Prevention of chronic allograft nephropathy with vitamin D. Transpl Int 2005; 18(10):1175-1186.

(97) Zittermann A, Tenderich G, Koerfer R. Vitamin D and the adaptive immune system with special emphasis to allergic reactions and allograft rejection. Inflamm. Allergy Drug Targets 2009; 8(2):161-168.

(98) Bitetto D, Fabris C, Falleti E et al. Vitamin D and the risk of acute allograft rejection following human liver transplantation. Liver Int 2010; 30 (3):417-444.

(99) Stein EM, Shane E. Vitamin D in organ transplantation. Osteoporos Int 2011; 22 (7):2107-2118.

(100) Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infectious Diseases 2020; 20(5):533-534.

(101) Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020; 382; 1708-1720.

(102) Shi S, Qin M, Shen B ,et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology 2020; 25; 802-810.

(103) Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395:1054-1062.

(104) Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X & Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine 2020; 180, 1-11.

(105) Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368, m1091.

(106) Petrilli CM, Jones SA, Yang J, at al. Factors associated with hospital admission and crticial illness among 5279 people with coronavirus disease 2019 in New York City: a prospective cohort study. BMJ 2020; 369, m1966.

(107) Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet: Diabetes and Endocrinology 2020; 8:570

(108) Marazuela M, Giustina A,Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic. Reviews in Endocrine and Metabolic Disorders 2020 In press.

(109) Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 2020; 14:561-565.

(110) Barlow PG, Svoboda P, Mackellar A, at al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 201; 6e25333.

(111) Campbell GR, Spector SA. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 2012; 8(10):1523-1525.

(112) Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathogens 2012; 8(5):e1002689.

(113) Mao J, Lin E, He L, et al. Autophagy and viral infection. Advances in Experimental Medicine and Biology 2019; 1209:55-78.

(114) Mushegian AA. Autophagy and vitamin D. Science Signaling 2017; 10; eaan2526.

(115) Shin DM, Yuk JM, Lee HM, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cellular Microbiology 2010; 121:648-1665.

(116) Jang W, Kim HJ, Li H, et al. 1,25-Dyhydroxyvitamin D(3) attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochemical and Biophysical Research Communications 2014; 451:142-147.

(117) Wang J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 2008; 4:947-948.

(118) Uberti F, Lattuada D, Morsanuto V, et al. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. Journal of Clinical Endocrinology and Metabolism 2014; 99:1367-1374.

(119) Campbell GR, Spector SA. Hormonally active vitamin D3 (1alpha,25 dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. Journal of Biological Chemistry 2011; 286:18890-18902.

(120) Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathogens 2012; 8 e1003017.

(121) Khare D, Godbole NM, Pawar SD, et al. Calcitriol [1,25(OH)2D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. European Journal of Nutrition 2013; 52:1405-1415.

(122) Tian G, Liang X, Chen D, et al. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. Journal of Steroid Biochemistry and Molecular Biology 2016; 163:157-163.

(123) Abdel-Mohsen MA, El Braky A, Ghazal AAE, Shamseya MM. Autophagy, apoptosis, vitamin D, and vitamin D receptor in hepatocellular carcinoma associated with hepatitis C virus. Medicine 2018; 97:e0172.

(124) Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Reviews in Medical Virology 2019; 29:e2032.

(125) Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology 2017; 39:529-539.

(126) Chu CM, Poon LL, Cheng VC, et al. Initial viral load and the outcomes of SARS. Canadian Medical Association Journal 2004; 171:1349-1352.

(127) Oh MD, Park WB, Choe PG et al. Viral load kinetics of MERS coronavirus infection. New England Journal of Medicine 2016; 375:1303-1305.

(128) Kohlmeier JE, Cookenham T, Roberts AD et al. Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 2010; 33:96-105.

(129) Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host and Microbe 2016; 19:181-193.

(130) Zhao J, Zhao J, Perlman S. T-cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. Journal of Virology 2010; 84:9318-9325.

(131) Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. Journal of the American College of Cardiology 2020, 75:2352-2371.

(132) Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation 2020; 141:1648-1655.

(133) Bangalore S, Sharma A, Slotwiner A. et al. ST-segment elevation in patients with COVID-19 – a case series. New England Journal of Medicine 2020; 382:2478-2480.

(134) Kunutsor SK, Apekey TA, Steur M. Vitamin D and Risk of Future Hypertension: Meta Analysis of 283, 537 Participants. Springer, 2013.

(135) Song Y, Wang L, Pittas AG et al. Blood 25 hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2013; 36:1422-1428.

(136) Pereira-Santos M, Costa PR, Assis AM, et al. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obesity Reviews 2015; 16:341-349

(137) Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney International 2011. 79:715-729. 103.

(138) Yuan W, Pan W, Kong J et al. 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. Journal of Biological Chemistry 2007; 282:29821-29830.

(139) Li YC. Molecular mechanism of vitamin D in the cardiovascular system. Journal of Investigative Medicine 2011; 59:868-871.

(140) Chen S, Sun Y, Agrawal DK. Vitamin D deficiency and essential hypertension. Journal of the American Society of Hypertension 2015; 9:885-901.

(141) Ye M, Wysocki J, William J, et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. Journal of the American Society of Nephrology 2006; 17:3067-3075.

(142) Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology and Therapeutics 2010; 128:119-128.

(143) Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension 1999; 33:207-211.

(144) Pilz S, Tomaschitz A, Drechsler C et al. Vitamin D deficiency and myocardial diseases. Molecular Nutrition and Food Research 2010; 54:1103-1113.

(145) Wang L, Song Y, Manson JE et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circulation: Cardiovascular Quality and Outcomes 2012; 5:819-829.

(146) Brøndum-Jacobsen P, Benn M, Jensen GB, Nordestgaard BG. 25-Hydroxyvitamin D levels and risk of ischemic heart disease, myocardial infarction, and early death: population based study and meta-analyses of 18 and 17 studies. Arteriosclerosis, Thrombosis, and Vascular Biology 2012; 32:2794-2802.

(147) Sokol SI, Tsang P, Aggarwal V, Melamed ML, Srinivas VS. Vitamin D status and risk of cardiovascular events: lessons learned via systematic review and meta-analysis. Cardiology in Review 2011; 19:192-201.

(148) Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Annals of Internal Medicine 2010; 152:307-314.

(149) Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014; 348:g2035.

(150) Tomson J, Emberson J, Hill M, et al. Vitamin D and risk of death from vascular and non-vascular causes in the Whitehall study and meta-analyses of 12 000 deaths. European Heart Journal 2013; 34:1365-1374.

(151) Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow up. Journal of the American College of Cardiology 2020; 75:2950-2973.

(152) Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research 2020; 191:145-147.

(153) Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis 2020; 18:1094-1099.

(154) Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis 2020; 18:844-847.

(155) Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation 2020; 142:184-186.

(156) Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 2020; 77:1-9.

(157) Entezari-Maleki T, Talasaz AH, Salarifar M, et al. Plasma vitamin D status and its correlation with risk factors of thrombosis, P-selectin and hs-CRP level in patients with venous thromboembolism; the first Study of Iranian Population. Iranian Journal of Pharmaceutical Research 2014; 13:319-327.

(158) Wu WX, He DR. Low vitamin D levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke. Clinical and Applied Thrombosis/Hemostasis 2018; 24:69S-75S.

(159) Khademvatani K, Seyyed-Mohammadzad MH, Akbari M, et al. The relationship between vitamin D status and idiopathic lower-extremity deep vein thrombosis. International Journal of General Medicine 2014; 7:303-309.

(160) Amrein K, Schnedl C, Berghold A, Pieber TR, Dobnig H. Correction of vitamin D deficiency in critically ill patients – VITdAL@ICU study protocol of a double-blind, placebo controlled randomized clinical trial. BMC Endocrine Disorders 2012; 12;27.

(161) Azim A, Ahmed A, Yadav S, et al. Prevalence of vitamin D deficiency in critically ill patients and its influence on outcome experience from a tertiary care centre in North India (an observational study). Journal of Intensive Care 2013; 1:14.

(162) Cannell JJ, Vieth R, Umhau JC, Holick MF, et al. Epidemic influenza and vitamin D. Epidemiology and Infection 2006; 134:1129-1140.

(163) Mathyssen C, Gayan-Ramirez G, Bouillon R, Janssens W. Vitamin D supplementation in respiratory diseases: evidence from randomized controlled trials. Polish Archives of Internal Medicine 2017; 127:775-784.

(164) Science M, Maguire JL, Russell ML, et al. Low serum 25 hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clinical Infectious Diseases 2013; 57:392-397.

(165) Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70:617-624.

(166) Monlezun DJ, Bittner EA, Christopher KB, Camargo CA, Quraishi SA. Vitamin D status and acute respiratory infection: cross sectional results from the United States National/Health and Nutrition Examination Survey, 2001-2006. Nutrients 2015; 7:1933-1944.

(167) Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technology Assessment 2019; 23:1-44.

(168) Lau FH, Majumder R, Torabi R et al. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv 2020. https://doi.org/101101/2020.04.24.20075838.

(169) Lanham-New SA, Webb AR, Cashman KD, et al. Vitamin D and SARS-CoV-2 virus/COVID-019 disease. BMJ Nutrition, Prevention and Health 2020; 3:106-110.

(170) Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clinical and Experimental Research 2020; 32:1195-1198.

(171) Gennari L, Campi I, Merlotti D, et al. Vitamin D deficiency is independently associated with COVID-19 severity and mortality. ASBMR Annual Meeting, 2020.

(172) Isaia G, Giorgino R, Rini GB, et al. Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporosis International 2003; 14:577-582.

(173) Romagnoli E, Caravella P, Scarnecchia L, Martinez P, Minisola S. Hypovitaminosis D in an Italian population of healthy subjects and hospitalized patients. British Journal of Nutrition 1999; 81:133-137.

(174) Boccardi V, Lapenna M, Gaggi L et al. Hypovitaminosis D: a disease marker in hospitalized very old persons at risk of malnutrition. Nutrients 2019; 11:128.

(175) Daneshkhah A, Agrawal V, Eshein A, et al. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. medRxiv 2020.04.08.20058578. https://doi.org/10.1101/2020.04.08.20058578.

(176) Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Medicine in Drug Discovery 2020; 6:100041.

(177) Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12:988.

(178) Gupta R, Hussain A, Misra A. Diabetes and COVID-19: evidence, current status and unanswered research questions. European Journal of Clinical Nutrition 2020; 74:864-870.

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Metrics



Downloads

Download data is not yet available.